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Abstract

Debugging the timing behavior of real-time systems is
notoriously difficult, and with a new generation of complex
real-time systems whose size is measured in tens of millions
of lines of code, the difficulty is increasing enormously. We
have developed TuningFork, a tool especially designed for
visualization, analysis, and debugging of large-scale real-
time systems. The system is capable of recording high-
frequency events at sub-microsecond resolution with almost
no perturbation to the application. The visualization tool
is capable of viewing system activity online in real-time,
and users can simultaneously explore the data interactively.
TuningFork has allowed us to find numerous timing bugs
and anomalies, including unexpected scheduling behavior,
clock resets, delayed lock release, and introduction of non-
constant-time functions.

1 Introduction

Real-time systems are becoming a pervasive part of the
computing landscape, forming an ever-increasing fraction
of deployed systems and developed lines of code. The con-
trol software for an automobile is expected to reach 100
million lines of code early in the next decade. Financial,
aerospace, telecommunications, computer games, cellular
phones, and military real-time systems will reach similar
levels of complexity.

Debugging even traditional isolated real-time systems
presents unique challenges, and when coupled with the
scale at which real-time systems are being developed for
future deployment, the difficulty of the problem increases
dramatically.

Unlike the debugging of conventional throughput-
oriented systems, debugging of real-time systems requires
an absolutely minimal probe effect, since otherwise the very
timing which one is attempting to debug will be disturbed,
and if the probe effect is large enough then the system will
simply cease to function. Furthermore, sampling-based ap-
proaches which compute aggregate statistics are of limited

use, since an error might consist of a procedure consuming
a few extra microseconds at a single point in a week-long
execution.

Our work on debugging and visualization of real-time
systems grew out of practical necessity: with the develop-
ment of our real-time garbage collection technology [1], its
deployment in commercial products [8], and its adoption
for the creation of such large real-time systems, we faced
the need to provide a comprehensive tool to support the
software lifecycle of such complex real-time systems that
involved the interaction of the operating system, the Java
virtual machine, and applications written in both Java and
traditional statically compiled languages.

The result is TuningFork, an Eclipse-based tool that sup-
ports online visualization and analysis of real-time activity
by multiple subsystems, now publicly available via IBM al-
phaWorks [7].

In this paper we will begin by describing the unique con-
stellation of requirements for debugging the timing behav-
ior of complex real-time systems, and then describe the sys-
tem architecture and visualization capabilities that were cre-
ated to support those requirements.

2 Requirements for Real-time Debugging

TuningFork’s unique capabilities came about because of
the demanding collection of requirements created by the
environment we were trying to support: the construction
of safety-critical real-time systems from multiple indepen-
dently developed sub-components running on a network of
server-class multiprocessor machines.

Finding Needles in Haystacks. The origin of a failure
could be in a single event in a week-long execution taking
four microseconds instead of one. This means first of all
that summarization-based approaches, popular in tools like
gprof [5] and all of its derivatives, are not useful. It also
means that the system must support the generation and pro-
cessing of a very large volume of events, on both the trace
generation side and the visualization tool side.

Discovery of Unexpected Behavior. Many failures are



caused by effects for which the user as yet has no quantita-
tive measure. Therefore the tool must provide visualization
capabilities that facilitate observation of unexpected behav-
ior.

Trace Collection as a Real-time Task. The generation
of trace events is the portion of the tooling that occurs in
the actual real-time system itself, as opposed to being per-
formed in the tool. Thus it is absolutely critical that trace
collection itself must be implemented such that its effects
are absolutely minimal, predictable, and pre-emptable.

Minimal impact requires an extremely efficient event
logging mechanism, and minimal computation of derived
metrics inside of the running system. Predictability means
no slow off-branch cases, in particular no file output, mem-
ory allocation, or synchronization performed on the appli-
cation threads. And pre-emptabiliy means that in case of
overload the entire logging mechanism may be suspended,
meaning that the tool must be robust in the face of lost
events.

Trace Visualization as a Real-time Task.Since faults may
be safety-critical, it is imperative to be able to observe, diag-
nose, and correct the problem as quickly as possible. This
means that the tool must be able to present the informa-
tion in a short, bounded amount of time after the originating
event occurs.

“TiVO” Control of Visualization. In order to observe
events in real-time, the system must be capable of rendering
a dynamic image of events, rather than a static representa-
tion. Furthermore, it must be possible to pause, reverse, and
change zoom factor in order to quickly hone in on an un-
usual event.

High-performance Rendering. In order to achieve high-
quality real-time playable views, the rendering performance
of each view must be very good: the user may have 6 views
open in play mode, each showing information about thou-
sands of events. In play mode we would like to achieve 24
frames per second, which leaves less than 7 milliseconds to
render each frame of each view.

Interactive Data Exploration. Many real-time faults be-
gin as unexpected non-failing behavior. Therefore it is nec-
essary to enable exploration of the available data by open-
ing new views, computing and visualizing new functions
over the data, changing resolutions, and moving to arbitrary
points in the execution time. Furthermore, this must all be
possible while in “play mode”.

Zooming Hours to Microseconds.Supporting data explo-
ration and the search for needles in haystacks requires an
ability to rapidly navigate across huge time scales: from
several hours down to a few microseconds. In other words,
the tool must be able to scale across 11 orders of magni-
tude with interactive response. This is an issue in both the
user interface – providing an intuitive and perceptually sta-

ble interface to navigate across time scales – and in the trace
processing infrastructure – by providing fast random access
and efficient, accurate summarization.

Highly Accurate Timing. Correct diagnosis of timing
failures requires very precise timing information – at sub-
microsecond resolutions if possible. This is considerably
complicated by the fact that the highest resolution cycle
timers on even small-scale multiprocessors may not be syn-
chronized and have considerable skew and drift.

Offline Analysis of Very Large Traces. While some sys-
tems will be observed in real-time, others will be analyzed
offline. A system generating a 128-bit event (64-bit times-
tamp and 64 bits of data) once every 10 microseconds will
produce 1.6 MB/s or 138 GB/day of trace data. The system
must therefore be capable of indexing, summarizing, and
randomly accessing very large data sets and paging them in
and out of memory.

Vertical Integration of Information. The real-time sys-
tem is a composite of the hardware, operating system, vir-
tual machine(s), and applications, some of which run on the
virtual machine and some of which run directly on the op-
erating system. Since these components may all affect and
interfere with each other, the tool must be capable of inte-
grating information from all of these sources.

Extensibility. Since the dynamic deployment environments
are unpredictable, the tool must be highly extensible. This
means accepting new trace formats, creating new data fil-
ters, and devloping new visualizations.

Self-Description. Traces must be highly self-descriptive
so that they continue to be useful for post-mortem analysis
long after they are collected. This means that they should
describe in detail the environment in which they were col-
lected, as well as the trace events that they contain. The
choice of trace events is almost certain to evolve over time,
and it must be possible to comprehend traces of two differ-
ent versions of the same application.

Testing for Timing Regressions.The tool must support au-
tomated testing and regression analysis. This implies script-
ing and the ability to generate both quantitative metrics and
visual information without user interaction.

3 System Design

Conceptually, TuningFork’s architecture (Figure 1) con-
sists of a thin client-side instrumentation layer which gener-
ates a trace. The trace can either be directly transmitted to a
TuningFork instance over a socket to be visualized on-line,
or be saved to a file for later analysis. A single TuningFork
instance can be simultaneously connected to more than one
trace source.

As discussed below, individual events in a trace are not
totally ordered. Therefore, the first processing step that oc-
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Figure 1. TuningFork Architecture

curs in TuningFork is to merge sort the incoming event data.
This ordered sequence of raw events is then fed to a collec-
tion of filters to produce Streams. Streams can either be fed
directly into Figures for visualization or be combined and
transformed to produce derived Streams.

3.1 Trace Generators

3.1.1 Trace File Format

The format of the trace file must be designed with the per-
formance requirements outlined earlier in mind. Because
the system must diagnose timing issues that are on the order
of micro- to milli-seconds, the rate of data generation can be
quite high. As a general design goal, the format and trace
file generation must be capable of handling a data rate on the
order of one event per micro-second. The volume of data
makes a binary format mandatory and rules out portable text
formats such as XML. Another consideration in the design
of the format is that it must be suitable for online use and
be able to drop data selectively without corrupting the re-
maining data. Finally, data generation is multi-threaded and
over-synchronization must be avoided to keep the overhead
low. Because we use the same format for atracefile and a
live feed, we often use these terms interchangeably.

We fulfill these requirements by imposing two structures
on the trace file. First, a trace file is a concatenation of
chunks of data. Chunks start and end with special bit pat-
terns to enable boundary detection. Moreover, most chunks
can be dropped without greatly affecting the data integrity
of the data file. If data is dropped because the logging can-
not keep up with the data generation, an explicit drop count

is included on the next transmission. If data chunks are lost
because of reasons beyond our control (such as by the net-
work layer), a sequence number on the chunks allow us to
detect this. The second structure in the trace file is the no-
tion of a feedlet. To avoid synchronization, each thread in
a system being monitored typically has its own buffers to
write data into and the data belonging to this thread consti-
tutes a feedlet. Data from a single feedlet is always time-
monotone. Because the data is mostly sorted, only a fi-
nal merge-sort of data from all the feedlets is required to
achieve a global ordering. The locality and linearity is not
important for efficiency but required for online mode be-
cause certain data computation and visualization cannot oc-
cur until all data up to a certain point in time has been re-
ceived.

3.1.2 Tracing Libraries

Initially, the only source of TuningFork traces was the Real-
Time JVM. As we gained experience in using TuningFork
to analyze and debug the JVM’s performance, it became
abundantly clear that to truly understand the real-time per-
formance of a complex system we would need the capabil-
ity to instrument all of its major sub-systems. To enable
this, we built generic TuningFork tracing libraries in Java
and C++ (the C++ library also includes a C binding). The
Java tracing library is already available as part of the Tun-
ingFork release on alphaworks [7]; we plan to include the
C++ library in a subsequent release.

Using these libraries it is fairly straightforward to aug-
ment a program with instrumentation to generate a Tuning-



Fork trace. The main challenge is in determining what to
instrument: the mechanics of generating the binary trace are
handled by the libraries. To further reduce the instrumenta-
tion burden, we have used AspectJ [17] to build higher-level
tooling to assist in instrumenting Java programs. Defining
fairly simple advice files is sufficient to weave in common
patterns of TuningFork instrumentation.

3.1.3 Trace Sources

In addition to the Real Time JVM, we have used the tracing
libraries to instrument a number of other programs. Us-
ing the C++ library in conjunction with SystemTap [16],
we instrumented the Linux kernel to generate events on
thread context switches, thread creation, and thread termi-
nation. We have used the Java trace library to instrument
both benchmark programs (see Section 4.2 and customer
applications. By combining these trace sources, we can
collect a “vertical profile” that includes OS, JVM, and ap-
plication level events in a common format that can all be
analyzed and visualized within TuningFork.

3.2 Events and Streams

Streams are the fundamental computational abstraction
in TuningFork. Streams are eitherbasestreams that are de-
fined by applying a filter over the Events in the trace orde-
rivedstreams that are defined by applying an operator to one
or more input Streams. There are several types of streams,
the most commonly used are Sample Streams, which rep-
resent a series of< time, value > pairs and TimeInterval-
Streams, which represent a series of (possibly overlapping)
intervals of time.

To give an example of how Streams can be composed, we
describe howAllocation Rate, is derived from the primitive
Allocate Bytesevents generated by the Real Time JVM. Al-
locate Bytes events indicate thatk bytes have been allocated
at a particular time and are generated as part of all slow-path
allocations. To build up Allocation Rate information, first a
summing stream adds Allocate Byte events and produces an
Allocated Memory Wallclock stream, which shows the al-
located memory changing over physical time. An exclusion
filter takes the Allocated Memory Wallclock events and the
GC Thread Running events and removes the latter time in-
tervals from the former, which produces an Allocated Mem-
ory Virtual stream which has a virtual time axis in which
garbage collector execution is not considered, since we are
interested in calculating the inherent allocation rate of the
application when it is not being interfered with by other
components. A differentiator stream differentiates the Al-
located Memory Virtual stream to produce an Allocation
Rate stream. Finally, a convolution filter can be applied to
smooth the Allocation Rate stream, for instance to alloca-

tion rate over 1/10 second intervals, to produce the Alloca-
tion Rate Smoothed 0.1 Second stream.

TuningFork uses Eclipse’s extension point mechanisms
to discover pre-defined Streams (and Figures) that are ap-
plicable to the loaded trace files. This provides a means
for “experts” to define commonly used Streams and Figures
for a particular application domain. However, Streams and
Filters can also be defined interactively from the Tuning-
Fork UI to support dynamic data exploration. The UI also
supports drag-and-drop of Streams into existing figures to
facilitate drill down activities.

To help discover “needles in a haystack”, TuningFork
supports a bookmark facility. Any TimeIntervalStream can
be used to define a set of bookmarks. These points are
marked in all the Figures, and the user can skip all Fig-
ures forward/backward from one bookmark to another with
a single click. One common usage of bookmarks is to filter
an existing TimeIntervalStream by duration to create a new
Stream of just those time intervals that are unusually long
(or short), then use that reduced Stream as a set of Book-
marks.

3.2.1 Indexing

Though breaking the trace file into chunks was originally
motivated by lossiness and multi-threadedness, the struc-
ture proved useful for handling large trace files as well. The
chunk boundaries provide a natural indexing structure and
TuningFork, when encountering a new trace file, begins by
creating a chunk index. Because the indexed information of
a chunk is hundreds to thousands of times smaller than the
chunk itself, we can afford to store the index in-core. With
this index, the in-core representation of a feedlet can cre-
ate a sub-index to allow random access to any event of that
feedlet. Unfortunately, the data structure that is most often
used is not the low-level chunks nor even feedlet events but
rather a globally ordered sequence of all events. A second
global index which refers to the feedlet events is needed.
For example, to find the 5000th event, the global index
would indicate that this corresponds to the 800th position
in the first feedlet, the 2400th position in the second feedlet,
and the 1800th position in the third feedlet. By starting a
merge-sort at those points, we can reconstruct global event
5000 and beyond.

3.2.2 Persistence and Caching

Just as TuningFork cannot keep an entire trace file in core,
it is also infeasible to keep all of the Stream data in core. In
a similar fashion to how chunks are handled, we also per-
sist Stream data to disk with an in-core cache to hold the
current working set. However, to support continuous, high-
performance visualization of the Streams, we also need to



maintain coarse-grained summaries of the data. This en-
ables us to visualize the data at coarser time scales without
having to access the precise data (which could consist of
millions of data points) to compute the visualization. When
the user zooms in on a particular region of the visualiza-
tion to examine it at a fine time scale, the necessary precise
data is automatically presented either by getting it from the
cache or by retrieving it from disk.

3.3 Figures and Painting

One of the goals of TuningFork is to render visualiza-
tions in a device-independant manner. From rendering static
images – such as PDFs, vector graphic or bitmap image for-
mats – to displaying dynamic visualization information in
real-time.

To support this, at the core of TuningFork is a cus-
tom graphics API,TFGraphics. Currently implemented for
SWT, AWT, PDF and OpenGL, and easily extensible to oth-
ers in the future, this API provides basic drawing primitives
in addition to richer operations commonly required when
drawing visualizations.

The core of the visualization framework in TuningFork
is thefigure. A figure performs three critical tasks. Firstly
it understands the type of stream data it can interpret, pro-
viding a mechanism that allows it to be connected to source
data streams. Secondly, the figure provides the rendering
logic for visualizing this stream as a sequence of method
calls against a TuningFork graphics API implementation.
Finally, the figure provides an interface that equates to a set
of control knobs that dictate both what data to display in
addition to controlling how it is rendered.

TuningFork provides several basic figures by default,
such as time series, histograms and pie charts. In addi-
tion, due to the unique capability of TuningFork to visualize
millions of tiny events, theoscilloscope, described in Sec-
tion 3.4 has been included. All figures understand a time
axis, and can be ‘played’ either in real time as a live trace is
fed to TuningFork, or offline through a trace file. Interest-
ingly, this play functionality is included for the histogram,
making it possible to view the state of the histogram over
time.

While the included figures allows users to visualize the
most common data streams, the system is designed to be
extended with domain specific figures. This capability has
been proven through the development of both astaff figure
– that translates MIDI events into notes on a staff, and a
heapfigure – that takes data from an instrumented Java VM
to display information about how memory is being utilized.

To support the requirements for high interactivity and
the display of complex visualizations, the primary render-
ing engine leverages the powerful OpenGL graphics library.
In combination with the stream summarization features dis-

cussed above, this enables a complete redraw of multiple
visible figures to occur at a refresh rate of over 25 frames
per second, providing a fluid and engaging visualization ex-
perience.

3.4 The Oscilloscope View

One of the unique features of TuningFork is the Oscillo-
scope view. Like a real oscilloscope, it is designed to allow
visualization of very high-frequency data. Furthermore, it
is able to show timing behavior across a wide range of time
scales.

The oscilloscope view fundamentally visualizes time in-
tervals. An example is shown in Figure 2. Time is shown
in successive “strips”, thus time proceeds from left to right
and top to bottom, like a book. Each colored rectangle is
a time interval, its color representing the event type. The
Oscilloscope view is the most “time intensive” of views: it
has time on both of its axes. By comparison, a time series
view has time on one axis (and sample values on the other),
while the histogram view and the application-specific heap
memory view do not have any time axis, but instead present
a summary or an instantaneous state, respectively, up to the
current time.

The power of the oscilloscope view comes from its abil-
ity to visualize large spans of time while still retaining the
ability to show very fine time resolutions. On a1600×1200
pixel display, one can zoom out using very thin strips – 4
pixels in height. Allowing for events as small as one pixel
wide, this provides the ability to display about 500,000 time
units. Thus at 1 millisecond resolution one can visualize
500 seconds or just over eight minutes of execution. Be-
cause of the ability of the human eye to detect patterns, one
can actually detect anomalies at the millisecond level even
at this extremely wide “zoom”. In Figure 2 the individual
500µs quanta are still visible [Note: this depends on your
printer resolution].

However, there are cases where one needs to view even
more data. For instance, we have built an audio generator
which produces a half CD-quality signal, meaning that it
runs at 22.05 KHz. Each time it runs and outputs a sample,
we record the beginning and end of the operation. Thus
we have 44,100 events per second, or one about every 23
microseconds. For this application, we need microsecond
resolution, meaning that we could only view about half a
second on a full screen. This is shown on the left in Figure 3.

To solve this problem, we usefolding – several periods
are overlaid on top of each other in a single strip. The color
intensity at a particular pixel is the weighted average of the
folded strips at that point. Thus periodic behavior shows
as dense color, while aperiodic behavior results in a smear
of light color. For high-frequency real-time systems where
periodic behavior is crucial, if we set the amount of time



Figure 2. GC Phases Visualized in the Oscilloscope

represented by each strip to the natural period of the ap-
plication (in our case 45.3515µs), then a perfectly sched-
uled task will display as perfectly aligned dark events. Any
“smear” shows variance in the scheduling of the tasks, as is
seen on the right in Figure 3, where the periods are folded
1024 times.

When the period is not known in advance, it can be var-
ied with a slider, and it is immediately apparent when the
right period has been found because the image suddenly ap-
pears “in focus”. We have found folding to be effective at
factors up to 1000 and more, meaning that the screen can
display several minutes of execution, while still retaining
microsecond timing resolution in the display. Furthermore,
the system maintains interactive responsiveness at this fold-
ing level, allowing the user to move back and forth in time
or to zoom in and out.

The Oscilloscope view has also proved highly effective
for finding interference patterns from other periodic events.
For instance, when we zoomed out on the view of the audio
generation task, we noticed a periodic interruption of about
300 µs every 50 ms. This turned out to be the operating
system resynchronizing the cycle counter with the lower-
frequency crystal oscillator!

4 Case Studies

This section presents two case studies of how Tuning-
Fork was used for performance analysis and system un-
derstanding during the development of IBM’s Real-Time
Java [8]. Throughout this product’s multi-year development
effort, TuningFork has been a key tool for understanding the
scheduling and performance characteristics of the system.

One of the key technologies in IBM’s Real Time Java
is the Metronome Garbage Collector [1]. Metronome is
an incremental real-time garbage collector that divides the
work of a single garbage collection cycle into a large
number of GC quanta. The Metronome scheduling algo-
rithm intersperses normal application execution with GC
quanta to achieve a desired Minimum Mutator Utilization
(MMU) [2]. As an example, the default settings in the pro-
duction version of Metronome use GC quanta of 500µs, a
scheduling window of 10ms, and a target MMU of 70%.
Therefore, when the system is working as designed in any
10ms window of execution there will be at most 6 GC
quanta, each of 500µs duration.

4.1 Unexpected GC Scheduling Decisions

One of the first unexpected discoveries we made about
our production implementation of Metronome related to its



Figure 3. Folding in the Oscilloscope: each strip represents on period of the task – 45.3515 µs. On
the left, without folding the 50 strips show about 2.3 ms of execution; on the right, each strip is the
superposition of 1024 strips, allowing visualization of over 2 seconds of data.
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Figure 4. Oscilloscope view of unexpected (left) and expected (right) scheduling of GC quanta. Both
schedules satisfy the MMU constraints (70% over a 10ms window), but the right schedule is more
desirable since it minimizes irregular GC pauses.



scheduling behavior. Within the core constraint that the
MMU bound must always be satisfied, the scheduler has
some flexibility in how it interleaves GC and application
execution. To ensure that MMU is not violated, the sched-
uler dynamically computes the current MMU based on a
trailing window of previous scheduling decisions. Using
the default parameters described above (500µs GC quanta
and an MMU target of 70% measured over a 10ms win-
dow), it is safe for the scheduler to decide to schedule a GC
quantum anytime that the current dynamic MMU is at least
75%. When a GC is in progress, the scheduler is invoked
every 500µs to make this decision.

The first implementation of the scheduler strictly fol-
lowed this MMU-centered policy. This resulted in an irreg-
ular scheduling pattern as shown on the left side of Figure 4.
At the very beginning of the GC cycle, dynamic MMU was
100%, so the scheduler would proceed to schedule several
GC quanta all in a row. This clumping quickly dampened as
GC proceeded, but it resulted in an irregular schedule and
application perceived pauses of up to 3ms. This schedul-
ing algorithm was in use for over a year before visualiz-
ing it in TuningFork made the undesirable (but technically
correct) behavior immediately obvious. We then revised
the scheduling algorithm to determine the minimum num-
ber of consecutive GC quanta it needed to obtain the de-
sired MMU target over the whole of the GC cycle (0 for
MMU > 50%, 1 for MMU > 33%, etc), and to never
schedule more than this minimum number of consecutive
GC quanta no matter how much MMU slack was available.
This resulted in the much more predictable scheduling be-
havior shown on the right side of Figure 4.

4.2 Application-Perceived Pause Times

After the initial development and performance tuning of
Metronome was complete, we conducted a series of exper-
iments to verify that Java applications were in fact obtain-
ing the desired utilization behavior. One scenario in which
Real Time Java could conceivably be deployed is as run-
time underlying a Java-based transactional system. As a
simple simulation of this type of workload, we used the
SPECjbb2000 [15] benchmark. The goal of the experiment
was to see how GC activity impacted transaction times. We
used our Aspect-J based instrumentation tooling to instru-
ment SPECjbb to demarcate the start and end of each trans-
action with a TuningFork event. We then ran the benchmark
and collected two TuningFork trace files: one from the ap-
plication and one from the JVM.

The left side of Figure 5 shows a visualization of indi-
vidual transaction durations computed from the application
trace, overlaid upon GC phase intervals from the JVM trace.
Note that TuningFork is able to automatically correlate data
from multiple trace files based on the timestamp data in the

traces. An optimal result for this experiment would show
a 43% increase in mean transaction time during intervals
when the GC was active (during these intervals the applica-
tion will only be getting 70% of the CPU). Realistically, we
expect context-switching overhead and locality effects to
further reduce application throughput and were expecting to
see somewhere between a 50% and 100% increase in mean
transaction time. However, it was immediately clear from
the visualization that transaction times were increasing by
300% to 500% during the GC cycle and furthermore that
they degraded more or less linearly throughout the Sweep
phase of the GC (the right-most of the two shaded GC re-
gions).

An oscilloscope visualization of the individual GC
quanta of the Sweep phase (right side of Figure 5 helped
us discover that as the Sweep phase of GC progressed, the
quanta were gradually lengthening from the desired 500µs
to 1500µs. Using TuningFork to iteratively drill down on
the sub-pieces of individual GC quanta, we soon discovered
that the actual core portion of each sweep quantum was end-
ing after 480µs, but that the quantum termination code was
taking progressively longer as the Sweep phase progressed.
Careful examination of these functions, which comprised a
very small fraction of the total GC code, revealed that at
the end of each quantum, a recently added piece of statis-
tics gathering code used to supportverbose:gc output
was incorrectly calling a function that determined precisely
how many bytes of free memory was available by traversing
each swept page instead of using a much faster approximate
function. After changing this one function call, we were
able to obtain the expected performance results, as shown
in Figure 6.

The ability to collect, visualize, and analyze highly
accurate profile data was critical to correctly diagnosing
this problem. We needed to observe system behavior at
the sub-millisecond scale without significant perturbation.
We were lucky in that this problem manifested even in
fairly short executions, however even these small trace files
contained millions of events corresponding to all of the
JVM/GC activity and hundreds of thousands of individual
SPECjbb2000 transactions. Interactive visualization and
cross trace file correlation were also invaluable to enable
us to quickly observe the signature trend and focus our at-
tention on the problematic code.

5 Related Work

A large body of work exists on performance visualiza-
tion and analysis tools.

Kimelman et al. [9] withPV Program Visualizer high-
lights the advantages of providing instrumentation from
multiple layers of the system, including hardware, the oper-
ating system, application and library code. This approach,
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Figure 5. The left figure shows the duration of individual SPECjbb2000 transactions in µs, the shaded
region indicates a GC cycle. The right figure shows an oscilloscope view of the individual GC quanta
in the Sweep phase of the same GC cycle.
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Figure 6. System performance after the GC performance bug was corrected. Transaction times now
show a constant degradation during GC and GC sweep quanta are stable at 500 µs.



now known asvertical profiling, is extended by Hauswirth
et al. [6] by auto-correlating the data rather than relying on
manual visual correlation.

The complexities involved in both the implementation
and performance tuning of parallel and distributed systems
have led to visualization techniques being embraced by
that community. ThePabloperformance analysis environ-
ment [14] is one of the more complete contributions, in-
troducing an environment for tracing and analysis, includ-
ing a self-describing trace format (SDDF), and advocates an
extensible approach to visualization.Jumpshot[21, 19] is
a tool for visualizing activity in message passing systems.
It is designed for large-scale parallel computations, is built
around a flexible logfile format and assists with the auto-
matic detection of anomalous durations, drawing the user’s
attention to problem areas in a parallel execution.

Other visualization systems are more concerned with ap-
plication profiling, where the goal is to understand where
time is spent during program execution. These tools in-
cludeHPCView[10] andSvPablo[3] which use a combi-
nation of hardware performance counters and sampling to
hierarchically aggregate the counts and attribute them back
to areas of the source code.Jinsight [4] is a tool designed
to assist with the development of Java applications. It con-
sists of a heavily instrumented JVM and a visualization tool.
Due to the overheads involved overheads, Jinsight is unsuit-
able for on-line usage, although De Pauw et al. [13] show
how to allow it to capture only short sections of an exe-
cution to allow some analysis of long running programs.
Paradyn[11, 20, 12] introduces the ability to dynamically
alter the active instrumentation, in addition to monitoring
overheads and adjusting instrumentation based on accept-
able overheads supplied as user parameters.

Significant effort has been made to ensure that Tun-
ingFork visualizations communicate information with ef-
ficiency and clarity. This effort has been guided by basic
principles on the display of quantitative information – as
discussed at by Tufte [18] – in addition to paying close at-
tention to feedback from users during the development pro-
cess.

6 Conclusion

TuningFork is a powerful tool for discovering timing
problems in large, complex real-time systems. This prob-
lem domain is not well served by previous tools, due to a
variety of inter-related requirements that require very high
performance across many facets of the system: recording of
events in the application, reading events into the tool, com-
puting derived event streams, random access over traces too
large to fit in memory, summarization, rapid repaint, and
rapid re-computation as users dynamically alter their view
of the data.

TuningFork solves these problems, and provides a rich
and extensible set of visualizations for discovering and di-
agnosing real-time behavior. As our case studies have
shown, TuningFork has proved very useful for our internal
development and for other users within IBM and at selected
customer sites.

With its recent public release on IBM alphaWorks, we
expect to further refine the tool and expand its capabilities
in response to feedback from a growing user community.
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